Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Auxin-Inducible Depletion of the Essentialome Suggests Inhibition of TORC1 by Auxins and Inhibition of Vrg4 by SDZ 90-215, a Natural Antifungal Cyclopeptide.

Identifieur interne : 000383 ( Main/Exploration ); précédent : 000382; suivant : 000384

Auxin-Inducible Depletion of the Essentialome Suggests Inhibition of TORC1 by Auxins and Inhibition of Vrg4 by SDZ 90-215, a Natural Antifungal Cyclopeptide.

Auteurs : Nathan A. Snyder [États-Unis] ; Adam Kim [États-Unis] ; Louis Kester [États-Unis] ; Andrew N. Gale [États-Unis] ; Christian Studer [Suisse] ; Dominic Hoepfner [Suisse] ; Silvio Roggo [Suisse] ; Stephen B. Helliwell [Suisse] ; Kyle W. Cunningham [États-Unis]

Source :

RBID : pubmed:30670608

Descripteurs français

English descriptors

Abstract

Gene knockout and knockdown strategies have been immensely successful probes of gene function, but small molecule inhibitors (SMIs) of gene products allow much greater time resolution and are particularly useful when the targets are essential for cell replication or survival. SMIs also serve as lead compounds for drug discovery. However, discovery of selective SMIs is costly and inefficient. The action of SMIs can be modeled simply by tagging gene products with an auxin-inducible degron (AID) that triggers rapid ubiquitylation and proteasomal degradation of the tagged protein upon exposure of live cells to auxin. To determine if this approach is broadly effective, we AID-tagged over 750 essential proteins in Saccharomyces cerevisiae and observed growth inhibition by low concentrations of auxin in over 66% of cases. Polytopic transmembrane proteins in the plasma membrane, Golgi complex, and endoplasmic reticulum were efficiently depleted if the AID-tag was exposed to cytoplasmic OsTIR1 ubiquitin ligase. The auxin analog 1-napthylacetic acid (NAA) was as potent as auxin on AID-tags, but surprisingly NAA was more potent than auxin at inhibiting target of rapamycin complex 1 (TORC1) function. Auxin also synergized with known SMIs when acting on the same essential protein, indicating that AID-tagged strains can be useful for SMI screening. Auxin synergy, resistance mutations, and cellular assays together suggest the essential GMP/GDP-mannose exchanger in the Golgi complex (Vrg4) as the target of a natural cyclic peptide of unknown function (SDZ 90-215). These findings indicate that AID-tagging can efficiently model the action of SMIs before they are discovered and can facilitate SMI discovery.

DOI: 10.1534/g3.118.200748
PubMed: 30670608
PubMed Central: PMC6404609


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Auxin-Inducible Depletion of the Essentialome Suggests Inhibition of TORC1 by Auxins and Inhibition of Vrg4 by SDZ 90-215, a Natural Antifungal Cyclopeptide.</title>
<author>
<name sortKey="Snyder, Nathan A" sort="Snyder, Nathan A" uniqKey="Snyder N" first="Nathan A" last="Snyder">Nathan A. Snyder</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kim, Adam" sort="Kim, Adam" uniqKey="Kim A" first="Adam" last="Kim">Adam Kim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kester, Louis" sort="Kester, Louis" uniqKey="Kester L" first="Louis" last="Kester">Louis Kester</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gale, Andrew N" sort="Gale, Andrew N" uniqKey="Gale A" first="Andrew N" last="Gale">Andrew N. Gale</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Studer, Christian" sort="Studer, Christian" uniqKey="Studer C" first="Christian" last="Studer">Christian Studer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel</wicri:regionArea>
<wicri:noRegion>CH-4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hoepfner, Dominic" sort="Hoepfner, Dominic" uniqKey="Hoepfner D" first="Dominic" last="Hoepfner">Dominic Hoepfner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel</wicri:regionArea>
<wicri:noRegion>CH-4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Roggo, Silvio" sort="Roggo, Silvio" uniqKey="Roggo S" first="Silvio" last="Roggo">Silvio Roggo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel</wicri:regionArea>
<wicri:noRegion>CH-4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Helliwell, Stephen B" sort="Helliwell, Stephen B" uniqKey="Helliwell S" first="Stephen B" last="Helliwell">Stephen B. Helliwell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel</wicri:regionArea>
<wicri:noRegion>CH-4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, Kyle W" sort="Cunningham, Kyle W" uniqKey="Cunningham K" first="Kyle W" last="Cunningham">Kyle W. Cunningham</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218 kwc@jhu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore</wicri:regionArea>
<placeName>
<settlement type="city">Baltimore</settlement>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30670608</idno>
<idno type="pmid">30670608</idno>
<idno type="doi">10.1534/g3.118.200748</idno>
<idno type="pmc">PMC6404609</idno>
<idno type="wicri:Area/Main/Corpus">000366</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000366</idno>
<idno type="wicri:Area/Main/Curation">000366</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000366</idno>
<idno type="wicri:Area/Main/Exploration">000366</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Auxin-Inducible Depletion of the Essentialome Suggests Inhibition of TORC1 by Auxins and Inhibition of Vrg4 by SDZ 90-215, a Natural Antifungal Cyclopeptide.</title>
<author>
<name sortKey="Snyder, Nathan A" sort="Snyder, Nathan A" uniqKey="Snyder N" first="Nathan A" last="Snyder">Nathan A. Snyder</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kim, Adam" sort="Kim, Adam" uniqKey="Kim A" first="Adam" last="Kim">Adam Kim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kester, Louis" sort="Kester, Louis" uniqKey="Kester L" first="Louis" last="Kester">Louis Kester</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gale, Andrew N" sort="Gale, Andrew N" uniqKey="Gale A" first="Andrew N" last="Gale">Andrew N. Gale</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Studer, Christian" sort="Studer, Christian" uniqKey="Studer C" first="Christian" last="Studer">Christian Studer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel</wicri:regionArea>
<wicri:noRegion>CH-4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hoepfner, Dominic" sort="Hoepfner, Dominic" uniqKey="Hoepfner D" first="Dominic" last="Hoepfner">Dominic Hoepfner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel</wicri:regionArea>
<wicri:noRegion>CH-4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Roggo, Silvio" sort="Roggo, Silvio" uniqKey="Roggo S" first="Silvio" last="Roggo">Silvio Roggo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel</wicri:regionArea>
<wicri:noRegion>CH-4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Helliwell, Stephen B" sort="Helliwell, Stephen B" uniqKey="Helliwell S" first="Stephen B" last="Helliwell">Stephen B. Helliwell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel</wicri:regionArea>
<wicri:noRegion>CH-4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, Kyle W" sort="Cunningham, Kyle W" uniqKey="Cunningham K" first="Kyle W" last="Cunningham">Kyle W. Cunningham</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218 kwc@jhu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore</wicri:regionArea>
<placeName>
<settlement type="city">Baltimore</settlement>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">G3 (Bethesda, Md.)</title>
<idno type="eISSN">2160-1836</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antifungal Agents (pharmacology)</term>
<term>Genetics, Microbial (MeSH)</term>
<term>Indoleacetic Acids (pharmacology)</term>
<term>Membrane Transport Proteins (MeSH)</term>
<term>Naphthaleneacetic Acids (pharmacology)</term>
<term>Peptides, Cyclic (pharmacology)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (antagonists & inhibitors)</term>
<term>Transcription Factors (antagonists & inhibitors)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides indolacétiques (pharmacologie)</term>
<term>Acides naphtalèneacétiques (pharmacologie)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Facteurs de transcription (antagonistes et inhibiteurs)</term>
<term>Génétique microbienne (MeSH)</term>
<term>Peptides cycliques (pharmacologie)</term>
<term>Protéines de Saccharomyces cerevisiae (antagonistes et inhibiteurs)</term>
<term>Protéines de transport membranaire (MeSH)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Indoleacetic Acids</term>
<term>Naphthaleneacetic Acids</term>
<term>Peptides, Cyclic</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acides indolacétiques</term>
<term>Acides naphtalèneacétiques</term>
<term>Antifongiques</term>
<term>Peptides cycliques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetics, Microbial</term>
<term>Membrane Transport Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génétique microbienne</term>
<term>Protéines de transport membranaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gene knockout and knockdown strategies have been immensely successful probes of gene function, but small molecule inhibitors (SMIs) of gene products allow much greater time resolution and are particularly useful when the targets are essential for cell replication or survival. SMIs also serve as lead compounds for drug discovery. However, discovery of selective SMIs is costly and inefficient. The action of SMIs can be modeled simply by tagging gene products with an auxin-inducible degron (AID) that triggers rapid ubiquitylation and proteasomal degradation of the tagged protein upon exposure of live cells to auxin. To determine if this approach is broadly effective, we AID-tagged over 750 essential proteins in
<i>Saccharomyces cerevisiae</i>
and observed growth inhibition by low concentrations of auxin in over 66% of cases. Polytopic transmembrane proteins in the plasma membrane, Golgi complex, and endoplasmic reticulum were efficiently depleted if the AID-tag was exposed to cytoplasmic OsTIR1 ubiquitin ligase. The auxin analog 1-napthylacetic acid (NAA) was as potent as auxin on AID-tags, but surprisingly NAA was more potent than auxin at inhibiting target of rapamycin complex 1 (TORC1) function. Auxin also synergized with known SMIs when acting on the same essential protein, indicating that AID-tagged strains can be useful for SMI screening. Auxin synergy, resistance mutations, and cellular assays together suggest the essential GMP/GDP-mannose exchanger in the Golgi complex (Vrg4) as the target of a natural cyclic peptide of unknown function (SDZ 90-215). These findings indicate that AID-tagging can efficiently model the action of SMIs before they are discovered and can facilitate SMI discovery.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30670608</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>07</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2160-1836</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>03</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>G3 (Bethesda, Md.)</Title>
<ISOAbbreviation>G3 (Bethesda)</ISOAbbreviation>
</Journal>
<ArticleTitle>Auxin-Inducible Depletion of the Essentialome Suggests Inhibition of TORC1 by Auxins and Inhibition of Vrg4 by SDZ 90-215, a Natural Antifungal Cyclopeptide.</ArticleTitle>
<Pagination>
<MedlinePgn>829-840</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/g3.118.200748</ELocationID>
<Abstract>
<AbstractText>Gene knockout and knockdown strategies have been immensely successful probes of gene function, but small molecule inhibitors (SMIs) of gene products allow much greater time resolution and are particularly useful when the targets are essential for cell replication or survival. SMIs also serve as lead compounds for drug discovery. However, discovery of selective SMIs is costly and inefficient. The action of SMIs can be modeled simply by tagging gene products with an auxin-inducible degron (AID) that triggers rapid ubiquitylation and proteasomal degradation of the tagged protein upon exposure of live cells to auxin. To determine if this approach is broadly effective, we AID-tagged over 750 essential proteins in
<i>Saccharomyces cerevisiae</i>
and observed growth inhibition by low concentrations of auxin in over 66% of cases. Polytopic transmembrane proteins in the plasma membrane, Golgi complex, and endoplasmic reticulum were efficiently depleted if the AID-tag was exposed to cytoplasmic OsTIR1 ubiquitin ligase. The auxin analog 1-napthylacetic acid (NAA) was as potent as auxin on AID-tags, but surprisingly NAA was more potent than auxin at inhibiting target of rapamycin complex 1 (TORC1) function. Auxin also synergized with known SMIs when acting on the same essential protein, indicating that AID-tagged strains can be useful for SMI screening. Auxin synergy, resistance mutations, and cellular assays together suggest the essential GMP/GDP-mannose exchanger in the Golgi complex (Vrg4) as the target of a natural cyclic peptide of unknown function (SDZ 90-215). These findings indicate that AID-tagging can efficiently model the action of SMIs before they are discovered and can facilitate SMI discovery.</AbstractText>
<CopyrightInformation>Copyright © 2019 Snyder et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Snyder</LastName>
<ForeName>Nathan A</ForeName>
<Initials>NA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Adam</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-3186-3912</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kester</LastName>
<ForeName>Louis</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-1715-4554</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gale</LastName>
<ForeName>Andrew N</ForeName>
<Initials>AN</Initials>
<Identifier Source="ORCID">0000-0002-1885-216X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Studer</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hoepfner</LastName>
<ForeName>Dominic</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roggo</LastName>
<ForeName>Silvio</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Helliwell</LastName>
<ForeName>Stephen B</ForeName>
<Initials>SB</Initials>
<Identifier Source="ORCID">0000-0001-6019-9574</Identifier>
<AffiliationInfo>
<Affiliation>Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cunningham</LastName>
<ForeName>Kyle W</ForeName>
<Initials>KW</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218 kwc@jhu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>figshare</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.25387/g3.7584434</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 AI115016</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 HD080102</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007231</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>G3 (Bethesda)</MedlineTA>
<NlmUniqueID>101566598</NlmUniqueID>
<ISSNLinking>2160-1836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009280">Naphthaleneacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010456">Peptides, Cyclic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C099493">VRG4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>154429-12-6</RegistryNumber>
<NameOfSubstance UI="C086371">SDZ 90-215</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>33T7G7757C</RegistryNumber>
<NameOfSubstance UI="C034182">1-naphthaleneacetic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005827" MajorTopicYN="N">Genetics, Microbial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009280" MajorTopicYN="N">Naphthaleneacetic Acids</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010456" MajorTopicYN="N">Peptides, Cyclic</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Golgi</Keyword>
<Keyword MajorTopicYN="Y">auxin</Keyword>
<Keyword MajorTopicYN="Y">auxin inducible degron</Keyword>
<Keyword MajorTopicYN="Y">functional genomics</Keyword>
<Keyword MajorTopicYN="Y">glycosylation</Keyword>
<Keyword MajorTopicYN="Y">rapamycin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30670608</ArticleId>
<ArticleId IdType="pii">g3.118.200748</ArticleId>
<ArticleId IdType="doi">10.1534/g3.118.200748</ArticleId>
<ArticleId IdType="pmc">PMC6404609</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2011 Apr;29(4):361-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 15;23(16):1929-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Jun 19;10(6):e1004211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24945925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2013 Sep;30(9):341-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23836714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2017 Jun 29;37(14):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28483912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Apr 11;344(6180):208-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24723613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2017 Feb 13;13(2):913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28193641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 1994 Jun 24;37(13):1908-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8027972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2017 Nov 15;130(22):3878-3890</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28993463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 22;327(5964):425-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2007;3:80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Aug;5(8):711-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18622397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2016 Jul;26(7):980-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27197223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 18;320(5874):362-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18420932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 May 08;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28481201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2018 Oct 30;9(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30377286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Feb 03;10:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Mar;151(3):979-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10049916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jul 5;7(1):4704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28680098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2017 Nov 27;51:83-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29178817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 May;13(5):453-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26999002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):7899-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8058731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Nov 21;52(4):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24211263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Jul;134(3):717-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8349105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):737-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Synth Biol. 2015 May 15;4(5):516-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24871672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Mar 25;257(6):3203-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7037780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W270-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21624888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2009 Jul;27(7):659-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19581876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 13;10(3):e0120250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25767889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 12;272(50):31908-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9395539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 May;29(10):2777-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19273587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 20;281(42):31616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Feb 28;152(5):1173-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23452860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1996 May 23;251(2):236-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8668135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Oct;50(1):167-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14507372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 Jun;28(6):617-623</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20473289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 Dec;6(12):917-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19915560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Oct;20(20):4444-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19726565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Nov 23;551(7681):521-524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29143814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 6;285(5429):901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;399:799-822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16338396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 9;276(6):4424-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11067855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Jan;184(1):29-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):E3350-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23150568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Apr 25;30(2):248-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Oct;195(2):599-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23893486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Dec 15;26(25):4631-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26510498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2014 Feb-Mar;169(2-3):107-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24360837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2012 Jun 14;11(6):654-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22704625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Oct 3;135(1):174-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854164</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
<settlement>
<li>Baltimore</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Snyder, Nathan A" sort="Snyder, Nathan A" uniqKey="Snyder N" first="Nathan A" last="Snyder">Nathan A. Snyder</name>
</region>
<name sortKey="Cunningham, Kyle W" sort="Cunningham, Kyle W" uniqKey="Cunningham K" first="Kyle W" last="Cunningham">Kyle W. Cunningham</name>
<name sortKey="Gale, Andrew N" sort="Gale, Andrew N" uniqKey="Gale A" first="Andrew N" last="Gale">Andrew N. Gale</name>
<name sortKey="Kester, Louis" sort="Kester, Louis" uniqKey="Kester L" first="Louis" last="Kester">Louis Kester</name>
<name sortKey="Kim, Adam" sort="Kim, Adam" uniqKey="Kim A" first="Adam" last="Kim">Adam Kim</name>
</country>
<country name="Suisse">
<noRegion>
<name sortKey="Studer, Christian" sort="Studer, Christian" uniqKey="Studer C" first="Christian" last="Studer">Christian Studer</name>
</noRegion>
<name sortKey="Helliwell, Stephen B" sort="Helliwell, Stephen B" uniqKey="Helliwell S" first="Stephen B" last="Helliwell">Stephen B. Helliwell</name>
<name sortKey="Hoepfner, Dominic" sort="Hoepfner, Dominic" uniqKey="Hoepfner D" first="Dominic" last="Hoepfner">Dominic Hoepfner</name>
<name sortKey="Roggo, Silvio" sort="Roggo, Silvio" uniqKey="Roggo S" first="Silvio" last="Roggo">Silvio Roggo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000383 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000383 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30670608
   |texte=   Auxin-Inducible Depletion of the Essentialome Suggests Inhibition of TORC1 by Auxins and Inhibition of Vrg4 by SDZ 90-215, a Natural Antifungal Cyclopeptide.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30670608" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020